skip to main content


Search for: All records

Creators/Authors contains: "Jaramillo, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report the synthesis of large-area, high-Ti-content, Mo 1−x Ti x S 2 alloy thin films in the 2H phase at temperature as low as 500 °C using a scalable two-step method of metal film deposition, followed by sulfurization in H 2 S. Film processing at higher temperature accelerates Ti segregation, film coarsening, and the formation of TiS 2 in the 1T phase. Crystal growth at higher temperature results in the formation of multiple binary sulfide phases, in agreement with the equilibrium phase diagram. Making highly metastable, smooth, and uniform single-phase alloy films, therefore, hinges on developing low-temperature processing. Our results are relevant to the development of technologies based on designer transition metal dichalcogenide alloys, including in photonic integrated circuits and gas sensing. 
    more » « less
  2. Chalcogenides in the perovskite and related crystal structures (“chalcogenide perovskites” for brevity) may be useful for future optoelectronic and energy-conversion technologies inasmuch as they have good excited-state, ambipolar transport properties. In recent years, several studies have suggested that semiconductors in the Ba–Zr–S system have slow non-radiative recombination rates. Here, we present a time-resolved photoluminescence (TRPL) study of excited-state carrier mobility and recombination rates in the perovskite-structured material BaZrS 3 , and the related Ruddlesden–Popper phase Ba 3 Zr 2 S 7 . We measure state-of-the-art single crystal samples, to identify properties free from the influence of secondary phases and random grain boundaries. We model and fit the data using a semiconductor physics simulation, to enable more direct determination of key material parameters than is possible with empirical data modeling. We find that both materials have Shockley–Read–Hall recombination lifetimes on the order of 50 ns and excited-state diffusion lengths on the order of 5 μm at room temperature, which bodes well for ambipolar device performance in optoelectronic technologies including thin-film solar cells. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. Ternary sulfides and selenides in the distorted-perovskite structure (“chalcogenide perovskites”) are predicted by theory to be semiconductors with a band gap in the visible-to-infrared and may be useful for optical, electronic, and energy conversion technologies. Here we use computational thermodynamics to predict the pressure–temperature phase diagrams for select chalcogenide perovskites. Our calculations incorporate formation energies calculated by density functional theory, and empirical estimates of heat capacities. We highlight the windows of thermodynamic equilibrium between solid chalcogenide perovskites and the vapor phase at high temperature and very low pressure. These results can guide the adsorption-limited growth of ternary chalcogenides by molecular beam epitaxy. 
    more » « less
  6. Abstract Ternary sulfides and selenides in the distorted-perovskite structure (“chalcogenide perovskites”) are predicted by theory to be semiconductors with band gap in the visible-to-infrared and may be useful for optical, electronic, and energy conversion technologies. Density functional theory can be used in combination with computational thermodynamics to predict the pressure-temperature phase diagrams for chalcogenide perovskites. We report results using the Strongly Constrained and Appropriately Normed (SCAN) and the rVV10 density functionals, and compare to previously-published results using the PBEsol functional. We highlight the windows of thermodynamic equilibrium between solid chalcogenide perovskites and the vapor phase at high temperature and very low pressure. These phase diagrams can guide adsorption-limited growth of ternary chalcogenides by molecular beam epitaxy (MBE). 
    more » « less